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Abstract
We report on a DLVO (Derjaguin–Landau–Verwey–Overbeek) theory
determination of cloud and solubility temperatures as a function of the salt
molarity in lysozyme solutions. The model is able to reproduce—with a fair
accuracy—the experimentally observed linear dependence on the logarithm of
the ionic strength, within a protein concentration range spanning from 90 to
140 g l−1. A short discussion of the results is also given in connection with
previous applications of the same DLVO model to protein solutions.

In a previous paper [1] (hereafter referred to as I) we showed that a globular protein solution,
composed of lysozyme in water and added NaCl salt, can be modelled successfully in terms of
a DLVO (Derjaguin–Landau–Verwey–Overbeek) theory [2]. Specifically, the experimental
protein-rich/protein-poor coexistence lines can be reproduced qualitatively if the DLVO
potential parameters are derived from the fit of physical quantities directly related to static
or dynamic light scattering data of the solution. Prompted by the continuing interest in simple
models of protein systems (see, for example, [3, 4]), here we continue the investigation initiated
in paper I and show that the DLVO approach is able to reproduce other experimental features
of the protein solution phase behaviour. In particular, we study the dependence of cloud and
solubility temperatures on the salt molarity of the solution, for which a linear dependence on
the logarithm of the ionic strength has been reported in experimental studies [5, 6].

We recall that the DLVO potential is written as the sum of a short-range attractive
van der Waals term,

vHA(r) = − AH
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and a Debye–Hückel-like contribution,
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Figure 1. The slope of the collective diffusion coefficient versus the solution ionic strength
in lysozyme solutions (pH = 4.5): circles—experimental points; curve—DLVO fit of kD at
Is = 1.2 M. All data are taken from [9].

combined to form the interaction potential

vDLVO(r) =
{

∞ r < σ + δ

vHA(r) + vDH(r) r � σ + δ.
(3)

Here, σ represents the effective protein diameter, AH is the Hamaker constant, Q = zpe is the
net charge on the protein in electron units, εr and ε0 are the (solution) relative and vacuum
dielectric constants respectively, and χDH is the inverse Debye screening length. The Stern
layer thickness δ, which is related to the intrinsic size of counter-ions that condense on the
macro-molecule surface, is introduced in equation (3) to circumvent the singularity of the van
der Waals term entering the DLVO theory [7, 8].

As discussed in detail in paper I, the parameters of the DLVO potential were fixed in
experimental works [7, 9], in order to rationalize static and dynamic light scattering data on
lysozyme in water and NaCl or (NH4)2SO4 salt solutions. In particular, Beretta et al [9]
reproduced the slope of the collective diffusion coefficient kD as a function of the solution
ionic strength Is, in terms of the DLVO representation. In what follows, we shall use their
theoretical curve crossing the single datum at ionic strength Is = 1.2 M (reported in figure 1),
obtained with parameters AH = 8.0 kBT , Q = 10 e, δ = 0.164 nm, and σ = 3.6 nm. In
paper I, we used this specific set of parameters to determine the fluid–fluid coexistence lines,
through Gibbs ensemble Monte Carlo (GEMC) simulations [10] at 0.51, 0.85 and 1.2 M ionic
strengths; these salt molarities correspond to the experimental conditions for which Muschol
and Rosenberger [5] determined the phase diagram of lysozyme solutions. For the benefit
of the reader, in figure 2 we reproduce the GEMC fluid–fluid coexistence lines obtained in
paper I.

Now, Broide and co-workers [6] have shown that the cloud temperature,Tcloud, of lysozyme
solutions varies linearly as a function of the logarithm of ionic strength, at fixed protein
concentration. Hinging on the simulation data reported in figure 2, we perform the same
investigation within our DLVO model for three different protein concentrations. It appears from
figure 3 that the theoretical Tcloud behaviour is fairly linear in log Is. As can be seen in figure 3(b),
the critical temperature Tcr also exhibits the linear dependence observed experimentally by
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Figure 2. GEMC cloud points of lysozyme model solutions at ionic strengths Is = 0.51 M
(squares), 0.85 M (circles), and 1.2 M (triangles). The curves are interpolations of the simulation
data with corresponding estimates for the critical points (crosses). All data are taken from paper I.

Muschol and Rosenberger [5]. The shift between the simulation and experimental curves
reflects the systematic over-estimate of the true critical points, as already documented in
paper I.

A similar linear dependence of the crystallization temperature, Tcrys, on the logarithm of
the ionic strength has been also reported in [6]. In paper I, the solid–fluid equilibrium was
determined through free-energy calculations of both the fluid and the solid phases. In particular,
the free energy of the fluid phase was determined in the framework of the thermodynamically
self-consistent hybrid mean-spherical approximation [11, 12], while the free energy of the
solid phase was obtained through a standard first-order perturbation theory [13]. However, the
latter was based on a reference fcc hard-sphere solid (not suited for representing the structure
of the real protein crystal), resulting in a large over-estimate of the true solubility envelope.
We then resort to a different expression for the chemical potential of the crystal, namely

µcrys = µ0 − 1
2 nsεDLVO − kBT ln[(λ − 1)3]. (4)

Equation (4) constitutes a simplified version of cell theory [14], applied extensively to systems
characterized by short-range interactions [15]. This approach provides a direct link to the
essential properties of protein crystals, namely the average number of contacts, ns, and the
translational freedom along one axis, λ, of the protein inside the unit cell. In equation (4)
µ0 is the standard part of the chemical potential and εDLVO is the minimum of vDLVO(r), thus
establishing a direct connection with our basic model. We assume in our calculations that
λ = 0.0225 nm and ns = 9—values which lie approximately at the centre of the commonly
accepted experimental ranges of λ = 0.017–0.03 nm [16] and ns = 8–10 [17]. The results
for the crystallization temperatures Tcrys are shown in figure 4, along with the experimental
points of [5, 6]. The DLVO Tcrys exhibits the correct linear trend as a function of the logarithm
of ionic strength; the discrepancy with the results of Broide et al [6] can be explained by
noting that the latter refer to a solution with a pH value that is different to that investigated
in [9]. We also observe that the discrepancy with the only experimental datum available at
approximately the same pH [5] barely exceeds 1%. Actually, the entire reproduction of the
experimental solubility curves reported in paper I can be greatly improved by adopting the
simple expression (4) to characterize the solid phase [18].
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Figure 3. (a) The symbols represent GEMC cloud points as a function of the logarithm of ionic
strength at different protein concentrations. (b) Experimental (full circles [5]) and simulation
(open circles) critical points as a function of log Is. The curves are linear fits of the simulation and
experimental points.
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Figure 4. Solubility points versus the ionic strength for lysozyme solutions at the fixed protein
concentration of ρ = 90 g l−1: experimental data—full circles from [6] (pH = 7.8) and diamond
from [5] (pH = 4.5); open circles—DLVO results.

In conclusion, the present results and those reported in paper I and [18] indicate that the
DLVO model reproduces with overall accuracy the relevant features of the lysozyme solution
phase diagram. We remark that the interactions between proteins in solution are generally much
more complex than those emerging from a straightforward central potential description, as for
the DLVO model adopted here. As we discussed extensively in paper I and [18], further tests
and applications are thus needed in order to ascertain the overall capabilities and limitations
of the proposed model.
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